
On the representation of functions

in different programming languages

Sven Moritz Hallberg
pesco@ khjk.org

2013 – 09 – 03

Abstract

The specific realization of functions and subroutines as provided by six
popular programming languages are surveyed from the standpoint of lan-
guage design. The languages discussed are C, Scheme, (Common) Lisp,
Smalltalk, Python, and Scala. Questions of interest include the sharing
of namespaces between functions and other objects, closures and scoping
rules, support for higher-order functions, lambda expressions, etc. An ad-
ditional section notes interesting points about some languages that are
not included in the main presentation.

1 Introduction

The concept of the function is omnipresent in programming languages. The
specific realizations of the abstract concept, however, differ. The purpose of
this article is to explore the facilities provided by some popular programming
languages that the author holds to be representative of a wide range of designs.

Questions of interest will concern the sharing of namespaces between functions
and other objects, closures and scoping rules, support of higher-order functions,
lambda expressions, etc. Note that these are aspects of the use and creation of
functions. Deliberately left out of the scope of this article are variations on their
form such as specific support for multiple return values, keyword arguments,
optional arguments, and arguments of variable number.

Even more primitive than the concept of the function, though obviously related,
is that of the variable. Roughly speaking, the things that can be assigned to
variables and passed as function arguments are referred to as first-class objects
or “first-class citizens” of a language. When functions fall into this category, the
language is commonly said to “have first-class functions”.

Since whether an object is first-class hinges upon its being able to be used as
the value of a variable, comparing the form of function and variable definitions
in a given language will be interesting.

1

2 On metalanguage

When discussing languages, it is in order to recapitulate the framework of met-
alanguage to be employed.

Most importantly, the things any language allows discussing are called its ob-
jects. The objects of a metalanguage are other languages. Consequently, the lan-
guages under study are referred to as object languages. Our object languages,
obviously, will be programming languages. The objects of programming lan-
guages, in turn, are functions, values, classes, etc.

The reader should be sure to remain conscious of the level, metalanguage or
concrete (object) language, which is the context of any statement. Particularly,
the term “object” as it pertains to (meta-) language is not to be confused with
the concept of the same name from an object-oriented object language (see?).

For example, a function in C++ does not itself constitute a first-class object.
Nevertheless, it is an object of the language insofar as the language allows
“talking” about it, in the form of describing its definition and referencing it in
the definition of other functions.

3 C (1972)

unsigned int hash(const char *buf, size_t len)

{

unsigned int v = 5381;

while(len--) {

v = v*33 + *buf++;

}

return v;

}

C[6] is a procedural programming language. That is, its central unit of abstrac-
tion is the procedure, a (named) sequence of instructions. Procedures may ac-
cept some parameters and return a result. In fact, C procedures are termed
functions and are obviously meant to represent (computed) value mappings as
well as instruction sequences.

The set of values in C includes function pointers: indirect references to a pro-
cedure that can be called just like a direct reference to that function’s name.

Function pointer types are odd-looking but their syntax is consistent with the
rules followed by other types. It is common to hide the unwieldy type behind
an alias.

typedef unsigned int (*HashFunPtr)(const char *, size_t);

As first-class values, function pointers can be passed as arguments, assigned
to variables, and returned as results. The following example shows a function
pointer variable being declared, assigned, and called:

HashFunPtr hp;

2

hp = &hash;

unsigned int x = (*hp)("text", 4);

Functions have access to the environment, that is variables and other functions,
available at the place of their definition – functions in C have lexical scope.
Unfortunately, they can only be created by definition at the top level of the
program. There is no support for local definitions, lambda expressions, or partial
application. However, these shortcomings can be worked around to a greater
extent than is often realized:

• Lambda lifting is the standard technique by which the required context of a
lambda expression is moved into the arguments of a top-level combinator.
Since there is no alternative, C programmers will do this instinctively
when defining “helper functions”.

• Partial application can be emulated to a degree by combining raw function
pointers with dynamic “environment” objects. There is no satisfactory
general solution, so instances of this workaround will be tailored to specific
situations. A generic example could look like this:

struct dfun { // function with dynamic environment

void (*f)(void *env, ...);

void *env;

};

void f_foo(void *env, ...);

struct dfun foo = {.f = &f_foo, .env = NULL};

Though restrictive, these techniques can go a surprisingly long way to support
“quasi-functional” combinator libraries [9].

4 Scheme (1974)

(define (hash str)

(let ((len (string-length str))

(elt (lambda (i) (char->integer (string-ref str i)))))

(do ((i 0 (+ i 1))

(v 5381 (+ (* v 33) (elt i))))

((= i len) v))))

Scheme is a distinct Lisp dialect designed from the ground up to be lean and to
support a number of “modern” features not present in early Lisps. Predating the
venerable Common Lisp by a decade, the requirement of, e.g., first-class contin-
uations and tail-call elimination by the Scheme standard was notable. As such,
Scheme had a strong influence on later Lisp dialects, not least Common Lisp
itself.

Function calls in Scheme take the familiar form of S-Expressions:

(hash "Hello!") ; call ’hash’ on a string

3

The only exception to this format are so-called special forms, indicated by cer-
tain keywords in the place of the function name. The important examples are
define which binds a top-level variable and lambda which returns a function
value.

(define tthree 23) ; bind symbol ’tthree to value 23

(lambda (x) ...) ; create a function of one argument

Functions are first-class values and the variant of define shown in the opening
definition of the hash function binds the variable hash to a function value. Using
define in this way is indeed equivalent[10] to binding hash to the result of a
lambda expression.

(define (hash str) ...) ; just a shortcut for...

(define hash (lambda (str) ...))

Matching the fact that function names are simply variables bound to function
values, the first element in a function call S-expression may generally be any
other expression that evaluates to a function; for instance:

((lambda (x) (x x)) (lambda (x) (x x)))

Functions in Scheme form lexical closures, i.e. they always execute in the envi-
ronment that was in effect, syntactically, at their place of creation. This allows,
for instance, a partial application operator — in this case only for two-argument
functions — to be defined:

(define (papp f x) (lambda (y) (f x y)))

The outer argument x is “enclosed”, or captured, by and remains available to
the returned function until needed.

5 LISP (1958 — Common Lisp 1984)

(defun hash (str)

(reduce #’(lambda (v x) (+ (* v 33) (char-int x))) str

:initial-value 5381))

The great mother of functional programming languages, LISP1 turned into a
practical general purpose language almost by accident when Steve Russell imple-
mented its first metacircular2 interpreter in 1960 [7]. The language subsequently
saw busy development into a number of dialects that eventually congealed in
the specification of Common Lisp[11].

Lisp is obviously similar to its descendant Scheme in many respects, but the
treatment of functions specifically is one area of significant difference. For ex-
ample, early Lisps did not support lexical closures. While that feature, pioneered
by Scheme, has since become standard in Common Lisp, another even more ob-
vious distinction remains.

1now usually spelled Lisp
2i.e. written in Lisp itself, cf. [1]

4

Functions in Common Lisp are conceptually first-class values that can be passed
around, etc., but by default they occupy a namespace separate from variables.

(defun foo () ’fun) ; define function

(defvar foo (lambda () ’var)) ; define variable

Executing the above lines does not present a name clash. It associates the func-
tion name foo with one function and the variable name foo with another.

The split of namespaces makes it necessary to distinguish which one is to be
referenced by symbols in any given context. For instance, the first place in a
function call form naturally accesses the function namespace while symbols in
other places usually refer to variables.

(foo) ; => ’fun

(funcall foo) ; => ’var

The funcall function is used to call a function when it is given by a variable or
other expression. Conversely, to dereference a function name like a variable, Lisp
provides the function special form. The character sequence #’ is a syntactic
abbreviation for it.

(funcall (function foo)) ; => ’fun

(funcall #’foo) ; => ’fun

At the same time, function provides the interpretation of lambda expressions
as shown in the opening example. On top of that, the “bare” form used as
(lambda () ’var) earlier is implemented by a syntactic macro. Thus the two
forms are ususally interchangeable. Yet, the following is an error; recall that
function lookup occurs not via evaluation:

(#’(lambda (x) x) ’ok) ; "invalid function"!

Perhaps surprisingly, the bare form works. Function lookup explicitly recognizes
and interprets it in the same way the function form does.

((lambda (x) x) ’ok) ; => ’ok

In summary, it should be clear why Scheme opted to avoid this confusing state
of affairs.

6 Smalltalk (1980)

hash

| v |

v := 5381.

1 to: (self size) do:

[:i | v := v*33 + ((self at: i) asciiValue)].

^v

What Lisp is to functional languages, Smalltalk[4] is to object-oriented program-
ming. Its inventor Alan Kay coined the notion when he developed Smalltalk. At
the heart of the language, however, as much as “everything is an object”, lies
the notion of method invocation as message passing.

5

To pass the message even to the object 1, for instance, it is simply written after
it as 1 even. Every message receives an answer, so expressions like that yield
a functional result, in this case false. A method argument is indicated in the
message by a colon. Binary operators are a syntactic special case that elides the
colon.

’hello’ at: 2 " => $e "

3 + 2 " => 5 "

More than one argument can be passed in a uniform way by attaching additional
keywords to the message.

’ask’ swap: 2 with: 3 " => ’aks’ "

Thus messages and methods form the primary representation of functions in
Smalltalk.

While neither methods (nor messages) are a priori cast as first-class objects,
Smalltalk provides and makes extensive use of a first-class representation for
blocks of code. For example, the familiar if construct is provided as a method
of the Boolean class:

(x > 0) ifTrue: [x "ok"] ifFalse: [0 "clamp"]

The bracket expressions can encapsulate any sequence of instructions and yield
code block (BlockClosure) objects A BlockClosure is called by sending the
value message to it.

As seen in the opening example, code blocks can take arguments; they also
form lexical closures. Thus they effectively model lambda expressions, albeit
in a fashion that is slightly inconvenient to call compared to regular functions
(methods).

7 Python (1991)

def hash(str):

v = 5381

for x in str:

v = v*33 + ord(x)

return v

Python is designed to be very much a prototypical3 object-oriented language.
All first-class objects are represented as instances of some class. Functions may
be defined in any scope. Functions as well as methods in Python are themselves
objects. In general, a method call

obj.foo(x)

occurs in two conceptually distinct steps[2]:

1. Lookup of the method obj.foo akin to an attribute. This yields an ob-
ject of class MethodType. This object, called a bound method, wraps the
function implementing foo and the instance obj.

3in the ordinary sense of the word; not to be confused with prototype-based

6

2. Invocation of the bound method’s special __call__ method. This will in
turn call the definition of foo on obj (as its self parameter).

Free functions as well as unbound method definitions are represented as objects
of class FunctionType. An unbound function call such as hash(’hi’) results,
as above, in the invocation of the function object’s special method __call__.4

Unbound methods are accessible as attributes of their class. Being ordinary
functions, they can even be called directly, without connection to an instance.
Consider:

class C:

def foo(self, x):

return self

c = C() # instantiate

c.foo(x) # => c

C.foo(z,x) # => z

It is worth noting that bound method objects save the method definition as it
was at the time of their creation. Later modification to the class do not affect
them.

f = c.foo # get bound method

C.foo = None # modify class

f(x) # => c

This fits with the fact that Python’s functions form lexical closures; extracting
a bound method is equivalent to the partial application of its self argument.5

Even though idiomatic Python focuses on imperative and object-oriented de-
signs, functional programming styles are supported by built-in higher-order
functions and the availability of lambda expressions.

map(lambda x: x+2, [1,3,5]) # => [3,5,7]

The utility of lambda expressions is somewhat constrained by the fact that their
body must consist of a single expression; no compound statements are allowed.
This restriction can be worked around with local function definitions.

8 Scala (2003)

def hash(str : String) : Int = {

str.foldLeft(5381)((v,x) => v*33 + x.toInt)

}

Scala[8] is an object-oriented programming language that combines Java with
a number of features from strongly-typed functional languages like Haskell. Its
syntax, while still reminiscent of Java, has undergone significant changes aimed
at making it more concise and convenient.

4Calling that method itself is possible and short-circuits to its own invocation.
5Actually, proper lexical scoping was not introduced until Python 2.2. [5]

7

The stain on Java’s “purely” object-oriented design is gone in Scala: every value
is an object. The primitive types of the JVM are automatically and transpar-
ently dressed in Scala classes. Accordingly, functions to be passed around are
represented by objects as well. Unlike Python, however, Scala does not apply
this representation to methods. Methods and the mechanism for calling them are
at first outside the realm of values. Syntax is then provided to construct function
objects from arbitrary code. In this respect, Scala is similar to Smalltalk.

Lambda expressions (not including an actual lambda) are formed with a double
arrow:

() => println("Hello!") // 0-argument procedure

(x:Int) => x+1 // unary function

(x:Int, y:Int) => x+y // multiple arguments

The type annotations on the arguments may or may not be required, depending
on the system’s ability to infer them in a given context. A useful shorthand is
available when only few arguments are used and their types are known. Using
an underscore as a placeholder for subexpressions forms a “headless” lambda
expression that accepts the required arguments in the order in which they ap-
pear.

(_ + 1) // increment argument by 1

(_ + _) // addition function

Variables, as mutable or immutable references, are declared by the var and val

keywords, respectively.

var step = 1

val inc = (x:Int) => x+step // lexical closure

Note that the closure captures the variable reference, not its value at the time;
changing step in the above example will modify the behaviour of inc accord-
ingly.

To make function objects as convenient as methods, the function call syntax is
overloaded. When used on a function object, it is translated to a special method
call apply on that object. This is similar to the situation with __call__ in
Python.

inc.apply(1) // => 2

inc(1) // equivalent to the above

Since the self-reference this and all instance variables are in scope during object
construction, it is interesting to note that it would be feasable to represent an
object’s methods as variables of function type alone:

class Counter {

var value = 0 // attribute

val count = () => value+=1 // method

}

Attribute initializations as seen above are placed automatically into the class’s
constructor. Unfortunately, the “methods as variables” style results in an extra
indirection of every call and bloats objects with the extra attributes. The def

keyword as seen in the opening example defines “real” methods with the added

8

benefit of allowing a one-to-one interface with classes written in Java. Local
definitions via def are also allowed inside any code block.

Support is provided to make regular methods usable as function objects. Firstly,
a method name can be turned into a function object by use of an underscore in
the place of the argument list.

val foo = obj.foo _

This underscore may be omitted where the type system knows that a function
object is required. One must be aware that this shortcut is part of some syntactic
overlap. Combined with other features, the possible meanings of a simple symbol
include:

• reference to a local variable

• reference to an attribute

• reference to a method to be wrapped in a function object

• call to a method where an empty argument list may be omitted

• call to an “accessor” method that has no argument list

In summary, a remarkable amount of clever syntactic and semantic effort is
included in Scala’s design to make the transition between methods and function
objects appear as seamless as possible. It is on the programmer, however, to
know where the shortcuts are applicable and where they are not.

9 Notable Absences

Given the proliferation of programming languages, many have to be left out to
limit the length of this presentation. The omissions do include some interesting
cases to be mentioned — at least in passing — here:

FORTRAN (1957) One of the oldest programming languages, FORTRAN
is remarkable in that it explicitly distinguishes between FUNCTIONs and
SUBROUTINEs. Only the former evaluate to a result for use in arithmetic
expressions while the latter support alternative exits/continuations. This
distinction between functions in the mathematical sense and structural
subprograms fits with the fact that the language — named for “formula
translating” — was developed with a focus on numerical calculation.

C++ (1983) Functions in C++ are much like their counterparts in C, gaining
only the generic programming capabilities offered by the template system.
In addition, though, classes and templates allow the implementation of
function objects. These are much comparable to those of Scala, albeit
having to obey much more cumbersome syntax. C++11 introduces lambda
expressions.

Haskell (1990) As a functional programming language through and through,
Haskell matches Scheme in making the definition of a function exactly
equivalent to the assignment of a lambda expression to a variable. Its very

9

concise syntax is in part supported by “Curry-style by default” where
partial and full function application are syntactically the same.

Java (1995) With the introduction of generics, it would be possible to officially
include function objects in Java, but no standard has emerged. Otherwise,
methods work essentially as they do in C++.

Ruby (1995) While drawing inspiration from a number of languages, Ruby
models its object system closely after Smalltalk. Code block objects carry
over in a slightly modified fashion, where they always form a special kind
of function argument. Lambda “expressions” are constructed as a regular
function in this framework.

JavaScript (1995) Under a veneer made to look like “classical” object-oriented
languages, JavaScript is actually prototype-based with a surprisingly clean
functional language at its core. Function definitions are for the most part
equivalent to lambda expressions assigned to variables, functions form lexi-
cal closures, and methods are implemented as function objects in attribute
slots.

10 Conclusion

While the basic concept is universal, the details of how programming languages
realize functions show significant differences. The design space appears not very
large but with interesting subtleties.

It seems noteworthy that there is no clear progression from immature to op-
timal designs over time. Very early, Scheme offers arguably the cleanest, most
unobstructed representation, surpassing and subsequently re-inspiring its own
origin. Other, more prevalent languages have found different variations neces-
sary to accommodate their chosen design goals.

Future programming language design will surely keep drawing inspiration from
a pool of ideas, not to mention in areas outside the representation of functions.

References

[1] H. Abelson, G.J. Sussman, and J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, Mass., USA, 2 edition, 1996.

[2] D.M. Beazley. Python essential reference. New Riders professional library.
New Riders, 2000.

[3] A. Goldberg and D. Robson. Smalltalk-80: the language. Addison-Wesley
series in computer science. Addison-Wesley, 1989.

[4] J. Hylton. Statically nested scopes. PEP 227, http://www.python.org/
dev/peps/pep-0227/.

[5] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Pearson
Education, 2005.

10

[6] J. McCarthy. History of lisp. History of Programming Languages, 1981.

[7] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima,
2008.

[8] M.L. Patterson, D. Hirsch, et al. The hammer parsing combinator library.
http://github.com/UpstandingHackers/hammer.

[9] M. Sperber, R.K. Dybvig, M. Flatt, A. van Straaten, R. Findler, and
J. Matthews. Revised6 report on the algorithmic language scheme. Journal
of Functional Programming, 19:1–301, 8 2009.

[10] G.L. Steele. Common Lisp: The Language. HP Technologies Series. Digital
Press, 1990.

11

