Swedish Analysis of Nazi Crypto TTYs

How Beurling et al. broke the Siemens \& Halske T52 crypto teleprinter

Sven M. Hallberg

pesco@khjk.org

Siemens \& Halske T52

6 electromechanical teleprinter
6 automatic en-/decryption
6 heavy! (>100kg)

Compare: Enigma

© only switches, plugs, lamps, and wheels
6 lightweight field device
6 rel. simple substitution cipher

Overview

Setting

- political
- technological
- Cryptanalysis
deciphering
algorithmic analysis
machine reverse engineering
- Conclusion

Setting

6 Germany still neutral with Russia
6 Russia had just invaded Finland
6 Germany fights allies in Norway
© Sweden neutral
\Rightarrow eager to know what's going on around it

Swedish cryptanalysis division

6 founded early on by good foresight
© routinely intercepting radio traffic
6 already good at breaking codebooks
© head of Russion section: Arne Beurling

Russian codebook crypto

© per-word substitution codebooks
6 superenciphered with one-time pads
BAD: pads often reused
\Rightarrow "repeats"

"Severely unreadable"

6 tons of unusual intercepts come in
© symbols not grouped for human handling
© 26 letters +6 digits $=32$ characters
\Rightarrow machine crypto!?

Teleprinter alphabet

6 "Baudot code" alias ITA 2.
6 only five bits per character
\Rightarrow two modes: letter/figure shift

Teleprinter alphabet

Letter shift	Code Pulses	Figure shift	Intercept
A	11000	-	
B	10011	$?$	
	\ldots		
Y	10101	6	
Z	10001	+	
Carriage return	00010	Carriage return	1
New line	01000	New line	2
Letter shift	11111	Letter shift	3
Figure shift	11011	Figure shift	4
Space	00100	Space	5
Empty character	00000	Empty character	6

Teleprinter cryptography

6 bit-wise XOR stream ciphers already known
6 pseudorandom key streams also a known idea
© usually generated using random-pattern pin wheels

Pin wheels

6 conceptually: a wheel circumscribed with a number of random bits
6 bits represented by presence/absence of pins
"read" mechanically
© turn one (or more) positions to "generate" next bit

Pin wheels (cont.)

6 bank of wheels for multiple bits
6 each wheel has different period (number of bits)
© coprime wheel periods maximizes whole stream's period

Cryptanalysis

Disclaimer

- Beurling broke the original T52 in just two weeks.
- He refused to talk about exactly how he did it.
- This talk presents only a plausible reconstruction.

An example intercept

hier $35 \mathrm{mbz} 35 q r v 54 b 35 \mathrm{kk} 35 q e p 45 q w 55 w t 55 q i 55 r u 55 t w$ 3355553535 umum35veve35zrddlh5fny13qukd4gehnswo

Remember:

$$
3 \text { - letter shift } \quad 4 \text { - figure shift } \quad 5 \text { - space }
$$

So read:
HIER MBZ QRV? KK QEP 1225184752 UMUM VEVE ...garbled...

An example intercept

hier 35 mb z35qrv54b35kk35qep45qw55wt55qi55ru55tw
3355553535 umum35veve35zrddlh5fny13qukd4gehnswo
Remember:
3 - letter shift 4 - figure shift 5 - space
Attack vectors:
© reused IVs
6 frequent use of typical sequences

- 35
- QRV also maybe?

Let's have some depth

Supposed that a set of messages has been received, all encrypted with the same key (i.e. QEP vector).

1. alzgj1guh4hjplhn6n5bve3cquhgfbjn...
2. np3umwfz31nmykmjhb625fmquhfdfz45...
3. grqumaa4jtqflqmhjiegtvfwpoi32slk...
4. lyzgj1oryydrqknhjn51akfd5vcerwrv...

Looking for repeats

Assume that bigraph repeats represent 35:

A first guess

Assume an additive superposition (XOR) cipher was used. That would imply the characteristic weakness

$$
m+m^{\prime}=(a+k)+(b+k)=a+b
$$

for messages in depth, where

$$
\begin{aligned}
a, b & =\text { plaintexts } \\
m, m^{\prime} & =\text { ciphertexts }
\end{aligned}
$$

A first guess

Assume an additive superposition (XOR) cipher was used. That would imply the characteristic weakness

$$
m+m^{\prime}=(a+k)+(b+k)=a+b
$$

for messages in depth, where

$$
\begin{aligned}
a, b & =\text { plaintexts } \\
m, m^{\prime} & =\text { ciphertexts }
\end{aligned}
$$

Unfortunately, the above does not hold in our case. But...

...it almost does!

In the fourth column of the example:
6 several 3's encrypt to U
6 several 5's encrypt to G

U	11100		3
G	01011111		
		5	00100
	10111		11011

6 They match up to a permutation!
© Other columns show exactly the same effect.

Second guess

Hypothesis. The cipher is an additive superposition followed by a random permutation σ.

$$
m=\sigma(a+k)
$$

Second guess

Hypothesis. The cipher is an additive superposition followed by a random permutation σ.

$$
m=\sigma(a+k)
$$

NB: $m=\sigma a+k$ would also appear possible a priori, but can be ruled out later.

How to uncover the permutation

6 look for pairings like 3-5 with a single 1 or 0 in their difference
© see where it moves in the ciphertext
\Rightarrow one element of the permutation discovered
6 need at least four distinct such pairings
6 lucky us: $35+$ QRV do the trick!

3	11111	3	11111	Q	11101	3	11111
5	00100	Q	11101	R	01010	V	01111
	11011		00010		10111		10000

Reverse engineering

6 How are the 5 keystream bits generated? safe to assume pin wheels
© How is the permutation generated?

How is the permutation generated

6 Beurling knew about relay switches from telephone exchanges
© depending on the input, current goes down one wire or another
© with these, "cross switches" can be built depending on input, two wires are either crossed or passed through

How is the permutation generated

6 Permutations can be decomposed into a series of transpositions.
\Rightarrow A sequence of several cross switches can implement any permutation.

6 Pin wheels could provide the inputs.
© How many switches in what arrangement?

Determining permutation switch

wirings

6 have five wires to permute
decomposing discovered permutations gives clues:

$$
[53421]=(51) \circ(234)=(51) \circ(23) \circ(34)
$$

\Rightarrow need at least switches to cross wires

- 5 and 1

2 and 3
3 and 4

A typical permutation wiring

6 Turns out there are never more than 5 transpositions involved.
\Rightarrow There are five cross switches.

The machine

6 note: safe to assume the machine processes one character per step

6 need 5 keystream bits for each character
6 need 5 random bits for the permutation
\Rightarrow the T52 has a drum of 10 pin wheels

Pin wheel patterns

6 still need to find periods and actual pin patterns of the 10 wheels

6 easy by manually deciphering a long sequence of text
\rightarrow reveals stream of 10-bit words

Pin wheel patterns (cont.)

6 lucky us: original T52 moves all wheels by one position per step
© just record the bit patterns until it starts repeating
\Rightarrow Complete machine state known now!

NB. Indeed: The derived wheel patterns turn out coprime, supporting our assumptions.

The mystery is solved.

We have derived the entire build-up and encryption state of the machine!

6 5-bit Baudot code teleprinter
6 additive superposition (XOR) cipher
6 followed by random permutation
6 random bits provided by 10 pin wheels
QEP numbers initialize 5 of 10 wheels

Automating decryption

6 Swedes promptly built automatic decryption machines
© find secret states once by manual deciphering
6 enter QEP numbers into decryptor
6 type ciphertext
6 decryptor prints cleartext :)

Conclusion

Cryptanalysis is black magic...

... plus:
6 experience
6 intuition
6 reasoning
6 perseverence

Thanks for listening.

6 Bengt Beckman: Codebreakers - Arne Beurling and the Swedish Crypto Program during World War II, Oxford University Press 2003
6 Lars Ulfving, Frode Weierud: The Geheimschreiber Secret - Arne Beurling and the success of Swedish signals intelligence, appeared in "Coding Theory and Cryptography: From Enigma and Geheimschreiber to Quantum Theory", Springer Verlag 2000

6 T52d simulator (Windows)
http://frode.web.cern.ch/frode/crypto/simula/t52/

