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Abstract—Input-handling bugs share two common patterns:
insufficient recognition, where input-checking logic is unfit to
validate a program’s assumptions about inputs, and parser
differentials, wherein two or more components of a system fail to
interpret input equivalently. We argue that these patterns are
artifacts of avoidable weaknesses in the development process
and explore these patterns both in general and via recent CVE
instances. We break ground on defining the input-handling code
weaknesses that should be actionable findings and propose a
refactoring of existing CWEs to accommodate them. We propose
a set of new CWEs to name such weaknesses that will help code
auditors and penetration testers precisely express their findings
of likely vulnerable code structures.

I. INTRODUCTION

Many famous exploitable bugs of the past few years—such
as Heartbleed, Android Master Key, Rosetta Flash, etc.—have
been parser bugs. These parsers tended to give experienced
code auditors the proverbial “bad feeling about this”. However,
a feeling is not a finding and is not actionable, no matter
how unsafe the code might look. As such, telling programmers
to be ever more careful [30, 25, 33] about sanitizing inputs
[11, 37, 21] is not helpful.

An implicit but common assumption has been that properly
following applicable specifications such as RFCs or ISO stan-
dards protects programmers against both unexpected effects
of crafted inputs and incompatibilities. Security lapses in im-
plementations of such standards are then often assumed to be
due to the indefensible carelessness of individual programmers
who failed to follow the standard.

Rather than blaming imperfect programmers, we should
take a look at the root causes of their mistakes. This leads
us to develop specific and easily verifiable requirements and
procedures, which have the potential to end the blame and fix
the problem.

A. Input-driven exploitation

There is a way in which all input-driven vulnerabilities are
alike and exploited alike: invalid input is processed instead
of being rejected. Its intended preconditions unsatisfied, the
processing code drives the system through a sequence of states
its designers did not foresee. An exploit can be thought of as
a program encoded in crafted inputs, using fragments of the
processing code outside of their intended preconditions as its

primitive operations, and operating in the space of states that
arise from precondition violations. [20, 14]

As Morris noted in 1973, the programmer “could begin each
operation with a well-formedness check, but in many cases
the cost would exceed that of the useful processing” [29].
To delineate between paranoia and prudently providing for
the satisfaction of preconditions in application logic, certain
questions must be answered: What are the properties of input
that need to be checked and can be relied upon? What coherent
sets of such properties can scale up to be implemented
correctly by large groups of programmers? To what extent are
the pitfalls properties of the input specifications themselves?
The LangSec methodology seeks to answer these questions.

B. LangSec

In a nutshell, language-theoretic security (LangSec) is the
idea that many security issues can be avoided by applying
a standard process to input processing and protocol design:
the acceptable input to a program should be well-defined (i.e.,
via a grammar), as simple as possible (on the Chomsky scale
of syntactic complexity), and fully validated before use (by a
dedicated parser of appropriate but not excessive power in the
Chomsky hierarchy of automata).

In other words, LangSec methodology starts with an explicit
grammar of expected inputs as a language. It postulates that
a well-constructed parser must plainly follow this grammar,
and must reject non-conforming inputs without operating on
them any further. This requires a clear and obvious boundary
between the input-validating code and the rest of the code,
at which the validated properties of inputs are clearly docu-
mented (and match the input language specification).

Our fundamental measure of input language “safety” is
the Chomsky complexity hierarchy. For a variety of reasons,
LangSec supports limiting protocols and other input language
specifications to grammars no more complex than determinis-
tic context-free. This constraint is both formally testable and
practical. For example, JSON, subsets of XML, and Protocol
Buffers can be used consistently and intuitively to stay within
these bounds if complex inner dependencies can be avoided.

Deviating from these principles opens a Pandora’s box of
bugs and exploits which, in general, cannot be algorithmically
mitigated.



C. Parsing weaknesses in existing CWEs

Before we present our taxonomy, we discuss how the
existing CWEs cover parser weaknesses—and why a more
comprehensive approach is needed.1

Existing CWE entries tend to characterize specific kinds
of programming errors such as buffer overflows (CWE-805),
but also represent broad attack types, e.g. cross-site scripting
(CWE-79) and SQL injection (CWE-89). Many LangSec bugs
could be filed under the abstract CWE-20, Improper Input
Validation. This could hardly be more general, but also, again,
hints that the weaknesses were mere programmer failure.

The CWE guides code analysis and application security
testing in many cases. Code reviewers and auditors generally
test that a program is secure against particular attacks and free
from particular patterns of weakness, and the CWE enumerates
a large corpus of items to check. In addition to the use of CWE
as a categorization of CVEs, code reviewers and code review
tools frequently frame individual findings as instances of a
particular CWE. The CWE acts as a pre-packaged justification
for the reporting of the finding, even where there is no actual
evidence of exploitability. This is valuable because attackers
usually have more time to develop creative exploits than
security analysts.

Generally, a security analyst has to justify a finding in some
way to report it. That justification might take the form of a
reference to a standard, evidence of actual exploitability, or
citation of a CWE or in another taxonomy. The analyst will
then refer to the citation to suggest a remedy.

There are currently 11 potential mitigations listed in CWE-
20, advising developers to attend to several necessary compo-
nents in input validation, but the closest it comes to directing
developers specifically to avoid writing shotgun parsers (see
below) is to call for input canonicalization (transforming input
into an application’s internal format before validation). It is
not explicit about the need to reject invalid input before
processing.

When the MITRE and SANS top 25 was still maintained,
a mitigations index was developed [4]. The index contained
general mitigations for the vulnerabilities identified in the top
25, e.g., M1 Establish and maintain control over all of your
inputs and M2 Establish and maintain control over all of your
outputs. The guidelines are agnostic to the specific method
and nature of the control for which they call. We aim our
taxonomy to include such guidance and add rigor to existing
vague guidelines.

II. TAXONOMY

The existing CWE descriptions related to LangSec-type
bugs are often inexact and concentrate on general effects rather
than underpinnings of the bugs. We propose a new taxonomy
that can be used to describe the relationship between the vio-
lation of LangSec requirements and resulting vulnerabilities:
• Shotgun parsing (ad-hoc validation during processing)

1We build on previous work [22], which classifies LangSec vulnerabilities
according to the MITRE Common Weakness Enumeration database.

• Non-minimalist input-handling code
• Input language more complex than deterministic context-

free
• Differing interpretations of input language
• Incomplete protocol specification
• Overloaded field in input format
• Permissive processing of invalid input
Where the above problems are allowed to exist, they are

likely to cause considerable numbers of vulnerabilities. For
example, we surveyed security bugs in OpenSSL from Jan-
uary 2015 to June 2016, by inspecting the reports of each
vulnerability assigned a CVE number and evaluating whether
the vulnerability could have been averted by avoiding one of
the antipatterns itemized above.

We categorized an OpenSSL vulnerability as relating to the
shotgun parsing antipattern when a discrete validation stage
would have prevented the ingress of invalid input (frequently
too-long input but occasionally other types) into application
logic or complex input transformations. We found permissive
processing of invalid input when a validator intentionally ac-
cepted invalid input and passed it through to application code,
for instance to accommodate interoperability with a buggy
implementation. In other cases, we found that a vulnerability
was related to an incomplete protocol specification when it
arose from a problematic interpretation of what constituted
valid input (or what the meaning of that input was) and
inspection of the relevant specification seemed to allow both
the pre- and post-patch behaviors.

Not all software projects express all types of vulnerabilities
from our taxonomy. For example, we did not categorize any
of the surveyed OpenSSL vulnerabilities as resulting from an
input language more complex than deterministic context-free.2

Of the 47 vulnerabilities enumerated, we estimate that 35
(74.5%) would have been averted if the design of that library
had avoided the problems taxonomized here. Out of these,
13 seemed most attributable to shotgun parsing and 11 to
attempts to process invalid input or corresponding failure to
reject known-invalid input.

We estimate that only 12 reported vulnerabilities in that
time period in OpenSSL were beyond the ken of LangSec.
These were generally cryptographic in nature, or related to
concurrency problems.

That a widely-used, critical cryptography library is mostly
vulnerable not because of cryptography implementation flaws
but because of the difficulty of processing even highly stan-
dardized input languages speaks to the need for a new way to
consider such vulnerabilities beyond “be more careful.”

III. ANTIPATTERNS

We now describe each of these antipatterns, and then discuss
how each antipattern led to serious security bugs.

2This is not to say OpenSSL is structurally immune to such problems. On
the contrary, if the recently-proposed anonymous authentication scheme of
Delignat-Lavaud et al. [19] were implemented in OpenSSL, the path to such
a vulnerability would be open.



a) Shotgun Parsing: Shotgun parsing is a programming
antipattern whereby parsing and input-validating code is mixed
with and spread across processing code—throwing a cloud
of checks at the input, and hoping, without any systematic
justification, that one or another would catch all the “bad”
cases.

Shotgun parsing necessarily deprives the program of the
ability to reject invalid input instead of processing it. Late-
discovered errors in an input stream will result in some portion
of invalid input having been processed, with the consequence
that program state is difficult to accurately predict. This type
of parsing can occasionally be detected by static means, since
it is rooted in program structure [48].

Many injection vulnerabilities, such as SQL injection or
XPath injection, fall into this category because they represent
a failure to correctly validate user input before it is used. In
fact, they usually represent a failure to validate it at all, so
that later application code (a SQL parser or some other type of
query engine) is the only validator the input goes through. This
relates back to the shotgun parsing problem: the “validator”
that accepts the input is both strewn throughout the program,
and not deliberate but rather emergent.

For another extremely common example of this, consider a
recent Rails bug, CVE-2016-0752 [8]. Here, directory traversal
is possible because a developer failed to remember to filter
dots. We can also model this problem as a failure to validate
input before processing it, since what ultimately happened here
and in the litany of similar cases is that the developer failed to
specify valid input, and so validity checking devolved to the
kernel or another component. The component (or composition
of components) to which input checking falls in these cases
tends to be unaware of the security requirements or high-level
notions of acceptable input, and so a breach is inevitable.

b) Non-Minimalist Input-handling Code: Input-handling
code should be minimalist in computing power. A regular
language should be handled by a finite automaton implementa-
tion, not by a pushdown one, nor by a more powerful model.
This precept is related in many ways to the need to avoid
shotgun parsing and complex input languages, but is distinct
from both: it is possible to have an overwrought parser that
validates input before processing and accepts a language that
is expressible by a simple grammar.

Initial input-handling code should do nothing more than
consume input, validate it (correctly), and deserialize it. Bugs
related to any computing power present in input-handling code
that is over the bare minimum required by the language fall
into this category. Computational power exposed at a validator
is power and privilege given to the attacker, and must be
minimized.

We note that the structure of the parser code is important for
enabling meaningful security audits regardless of the parser’s
backend mechanism. For example, it took over 10 years to
discover a chunk-length integer overflow bug, CVE-2012-
2028, in Nginx’s handling of the HTTP Chunked Encoding,
even though a very similar bug in Apache, CVE-2002-3092,
was thoroughly understood in 2002! This is despite Nginx’s

HTTP parser being explicitly structured as a hand-coded finite
automaton—but the inputs and states of this automaton were
all mixed together for all the grammar elements, and thus
thoroughly unintelligible to auditors.3

One important class of problems falling into this category
is the exposed reflection antipattern in the Java platform. For
example, consider the Elasticsearch vulnerability CVE-2015-
1427 [51]. The vulnerability arose from the use of the JVM
language Groovy as a scripting language for user-originated
query scripts. Developers attempted to sanitize the scripts. 4

Unfortunately, reflection was still allowed because the parser
failed to constrain the input language to the minimum effective
sublanguage5, leading to unrestricted remote code execution.
Certainly, one might view this as another instance of the
dreaded missing check, but we posit the problem is more
systemic than this. A minimalist domain-specific language
used instead of Java or Groovy would almost certainly not
have had this problem.

The litany of XML parser vulnerabilities also tends toward
this category. The canonical mitigation for all such problems,
systemized by Späth et al., is to limit the capabilities of the
parser [46], making it more minimalist.

c) Input Language More Complex than Deterministic
Context-Free: We recommend not letting language complexity
go above deterministic context-free (DCF) first and foremost
because of the issue of parser equivalence. Most systems these
days contain not one, but several parser implementations for
the same protocol; it is an implicit requirement for correctness
and often security that these implementations be equivalent
in how they interpret the protocol’s messages. When testing
equivalence, automation is desirable—but syntactic complex-
ity beyond DCF sets a sharp theoretical limit to what can be
achieved algorithmically.

As language complexity moves up the Chomsky hierarchy,
it becomes harder to reason about a parser’s behavior, such as
whether it validates its inputs correctly. Rice’s theorem [38]
already tells us that non-trivial properties are undecidable
over arbitrary programs, so we must naturally seek specialized
ways to ensure that a parser accepts only valid inputs, such
as constructing the parser from a formal grammar, as an
automaton of the right class for that grammar on the Chomsky
scale. Yet even when starting from formal grammars, an
implementation’s accepted language may be hard to reason
about.

Notably, it is still generally undecidable whether two
context-free grammars (i.e., parsers) correspond to the same

3The vulnerable parser, ngx_http_parse.c, contained 57 switch state-
ments with 272 single-character clauses in 2.3K SLOC. Even though such
code can be fast, it should not be hand-written!

4This, only after the developers of Elasticsearch discovered in CVE-2014-
3120 [6] that allowing users to specify arbitrary code for execution in a
query leads to a remote code execution vulnerability. Use of general purpose
languages in this way is problematic for many reasons–they also tend to
be more complex than deterministic context-free to parse, and tend to have
many surprising features. Attempts to sandbox them lead to an endless fount
of sandbox escapes.

5We posit that doing so is impractical in cases where it is not impossible.



language [28]. Thus it may be impossible to determine whether
a given implementation is equivalent to another given imple-
mentation, or indeed even to the specification. We identify this
theoretical result as a leading root cause for parser differentials
such as those found in SSL implementations [32].

However, grammar equivalence is decidable for the deter-
ministic context-free languages [43]. This class is generally
well-studied and consists precisely of the LR-parsable lan-
guages [34]; standard algorithms such as LALR and others
parse large subclasses of it very efficiently. Moreover, context-
free grammars form an accessible language for specification,
and parsers can be conveniently generated from them with
existing software.

For a vulnerability that may be attributed to language com-
plexity, consider CVE-2013-2729. An out-of-bounds memory
access occurs in Adobe Reader when a BMP file using run-
length encoding contains invalid movement deltas, operations
that move the “cursor” in the output buffer. The implemen-
tation performed no bounds check, allowing pixel data to be
written to arbitrary memory locations. Although it is tempting
to assign blame to the missing bounds check, we ask why
it was forgotten in the first place. Our answer is that these
operations are highly context-sensitive, making it difficult to
reason about their correct implementation. Complexity analy-
sis would have highlighted them for scrutiny.

To see how movement deltas lift the language into context-
sensitivity, note that, in a context-free setting, results would
be generated sequentially, and the cursor could be considered
an internal part of the abstract and individually verifiable
parsing algorithm. Explicit movement operations turn this
output pointer into mutable state at the application level;
the input language is no longer free of this context. Control
over this pointer given to user input requires more power to
reason about its validity, leading to the missed check, and thus
exploitability.

A related, yet distinct, issue is excessive computational
power in the semantics of an input language. Obvious in-
stances are Javascript and similar “scripting” languages em-
bedded in input formats. Here we meet the halting problem and
the full weight of Rice’s theorem. Malicious code is impossible
to detect with certainty.

An example of a vulnerability resulting from this is the
recent Ethereum vulnerability allowing exploitation of “The
DAO,” the altcoin’s version of a mutual fund or investment
bank. Cryptocurrencies generally include a notion of a “trans-
action” or “contract,” in the form of a set of instructions. In
the case of Ethereum, this set of instructions had a unique
property: deliberate Turing-completeness [7]!

Cryptocurrency contracts and their semantics should be
viewed as protocols, since they are intended to describe
instructions within specific bounds for other parties to read
and perform. In the case of Ethereum, the Turing-completeness
of its contracts, and in particular the allowance for recursion,
allowed massive theft of funds [18, 15].

Ethereum’s attempt to limit computational power through
the “gas” mechanism [1]—which assigned a cost to individual

operations but placed no limit on the complexity of program
semantics—was ineffective. Unlimited complexity resulted in
unanticipated program semantics; the currency collapsed, and
was ultimately hard-forked in an attempt to annul the heist
[16], while re-architecture of The DAO is ongoing [9].

For further evidence that Turing-complete input languages
tend to lead to vulnerability, consider the catastrophic (that
is, CVSSv2 base score 9.3) vulnerability presented in 2013
by Julia Wolf, CVE-2011-3402 [50]. TrueType fonts contain
a Turing-complete bytecode language; following exploitation
of a related memory corruption vulnerability, the “glyph
program” used to describe scaling of glyphs could manipulate
kernel-mode memory. It provides computational primitives
needed for exploitation right there in the intended program
functionality. It is worth noting that although in this case the
font format exploited was Turing-complete, the functionality
required by the exploit in Wolf’s detailed walkthrough is no
more than that of a linear-bounded automaton. This makes it
a useful example of the need to absolutely minimize compu-
tational power of (weird) machines in program semantics.

d) Differing Interpretations of Input Language: Whether
or not an input language is complex, different programs,
different implementations of the same input language, and
even different components of the same program in the same
runtime context can interpret input differently, both from each
other and from the specification. The result is that input
produced by a trusted entity might become malicious on
interpretation, or that validation methods such as application
firewalls will fail to mask out invalid input. A correctly written
parser is essentially equivalent to an application firewall [45].

An excellent example of this weakness is the series of
bugs collectively known as the Android Master Key bugs [41,
40, 42]. In these, different components of the Android install
chain—namely, the Java-based cryptographic signature verifier
and the C++-based installer—disagreed in the interpretation of
the ZIP-ed package contents, resulting in the attacker’s ability
to install entirely different contents than what was verified.
The remedy eventually included handling package input data
with the same parser.

An earlier but arguably higher-impact example was provided
by Kaminsky, Sassaman, and Patterson [32], introducing the
concept of parser differentials and demonstrating over 20
of these between the different libraries used by the X.509
SSL infrastructure libraries at the time. By manipulating the
X.509 inputs, these attacks created different views of the
apparently benign Common Name (CN) in Certificate Signing
Requests (CSR) as seen and signed by a Certificate Authority
(CA), and the same CN in the CA-signed certificates as seen
by a browser using a different SSL library. Specifically, the
browser would see a high-value CN instead of the benign
obscure CN—and thus trust a malicious site that submitted the
crafted CSR. For instance, CVE-2009-0408 [31] was a critical
vulnerability of this type with respect to the Netscape PKI
and TLS library libnss, leading to clients reading as signed
certain properties not actually intended by the issuing CA. The
vulnerability caused libnss to interpret certain certificates



as authenticating properties that the issuing CA did not intend,
since the issuing CA and libnss interpreted the certificates
differently.

e) Incomplete Protocol Specification: Attempting to
write equivalent parsers is of course impossible if the language
itself is ill-defined. For example, consider OpenSSL CVE-
2016-0703, a high-severity OpenSSL bug involving an obso-
lete method of negotiating the client master key wherein part
of it is sent in the clear. The protocol specification indicates
how to handle “clear key bits”, but says little about permitted
scenarios and usages for them [27]. This specification-level
incompleteness coupled with a faithful implementation of the
protocol led directly to exploitability.

Another vulnerability, this time in libnss, allowed remote
code execution on certificate validation. Cited as CVE-2009-
2404 [36], this critical vulnerability resulted from a simple
heap buffer overflow in libnss, related to a failure to allocate
correct buffer size—or did it?

Our preferred interpretation addresses a different and more
systemic aspect of this vulnerability. The flaw rests in the
processing of a non-standard Netscape certificate syntax that
uses regular expressions to define which hostnames a certifi-
cate is valid for. The specification is very difficult to locate
(and may not exist at all), but it is clear to see how this
extension ambiguates the X.509 subset used in this type
of authentication. This ambiguity resulted in an interaction
between null characters and regular expressions, which could
have been prevented if a specification addressed whether null
characters or regular expressions had their normal meanings
in the CN component of the certificate subject DN.

f) Overloaded Field in Input Format: The reuse of data
fields for different purposes can be a good indication of
ad-hoc constructions or hasty additions—an obvious road to
complexity and mistakes. On the other hand, consider a benign
grammar such as the following:

S → ′1′ time | ′2′ count

time → 32bit

count → 32bit

Here, the second field of the message is “reused” only in the
sense that it occupies the same space in both forms.

Although it does not necessarily raise language complexity,
overloading can serve as valuable circumstantial evidence.
A classic method [26] for exploiting memory corruptions in
the Windows low-fragmentation heap made use of a chunk
relocation offset to elevate small buffer overflows to arbitrary
writes. The feature was activated by placing the special value
5 in a field otherwise used as a byte counter.

Another high-impact vulnerability of this class relates to
an NTP authentication bypass discovered in 2015 [24]. The
field indicating which cryptographic key to use was overloaded
to indicate “authentication not required”—which any attacker
was allowed to assert at will, because the attacker is allowed
to specify which key they are using.

g) Permissive Processing of Invalid Input: The tradi-
tional “robustness principle” dictates that one should “be
liberal in what you accept” [2]. After leading developers to
implement vulnerable programs for decades, this principle has
attracted considerable discussion [10, 39]. We argue that one
should not be liberal, but definite—or explicit—about what is
accepted.

This class of vulnerability subsumes most cases of failure
to validate program input, but in a more general way, since it
encompasses both deliberate and accidental instances. Rather
than concentrating on the need for programmers to account
for and filter all malicious input, we recommend a strict
whitelisting approach where the whitelist is generated by a
grammar derived from a specification, which describes valid
instances of types the program is prepared to accept.

When programs process invalid input instead of discarding
it, the consequences can be very similar to shotgun parsing:
application state is easily made inconsistent by an attacker
who manufactures bad luck and selectively violates the spec-
ification. The consequences can also be dire. The well-known
“Heartbleed” bug [5] was an instance of this class; heartbeat
requests with a shorter payload than the asserted length are
certainly not strings in the (extraordinarily complex) TLS
protocol grammar, and yet OpenSSL attempted to process
them anyway, with disaster the result.

IV. REMEDIES

There is an unfilled need to mitigate certain types of input
processing failures at the design level. Where such vulnera-
bilities share a common root cause, the task of searching for
and mitigating them individually is impossible to complete
and is also a waste of the resources spent on it. We outline
some design principles, mapped in the CWE style to specific
vulnerabilities from our taxonomy, that promise to prevent
parser bugs from continuing to be the menace that they are.

a) Completely separate input validation from application
logic: Avoid writing shotgun parsers. Input should be fully
validated by a machine expressible as a deterministic push-
down automaton. Only once validation succeeds should any
application logic proceed. Programmers with formal experi-
ence can directly express the recognizer, but in practice, basic
formats such as JSON, XML, Protocol Buffers, or ASN.1 are
common. Only a small number of programs actually have input
languages no more constrained than their data interchange
format. In this case, input should be validated against a
complete schema using bounded state and no more than one
stack.

Parsing of a basic interchange format into an internal
representation is sometimes referred to as canonicalization.
Canonicalization and schema validation must exist as discrete
steps. If validation logic is intermixed with other functional-
ity or no validation beyond canonicalization is being done,
security analysts should make an observation to this effect.

b) Minimize complexity of pre-validation code: This
remedy is only possible for the simpler input languages, such
as finite, regular, or context-free languages, which occupy the



bottom rungs of the Chomsky syntactic hierarchy. For each of
these language classes, the validating parser that accepts only
valid inputs and rejects invalid ones (a.k.a. a recognizer for
the input language) has a well-known structure, ranging from
the finite state to the pushdown automata class.

In general, the code responsible for input canonicalization
and validation should be constrained to just those functions.
This is not the place to introduce application logic. Canoni-
calization should only deserialize input, and validation should
only verify that it matches the defined grammar.

The easiest way to implement this remedy is to make the
structure of the parser code in charge of input validation follow
the structure of the grammar. We look to parser construction
toolkits like Hammer [49] (discussed in V) to allow developers
to write code that literally embodies the grammar’s produc-
tions. Such code will be highly amenable to auditing.

c) Avoid defining complex input languages: It is virtually
never necessary to design an input language that cannot be
reduced to a syntax validatable by a deterministic push-down
automaton.

We recognize that this advice is meaningless to program-
mers and security analysts without a formal language back-
ground; therefore, we distill this recommendation into a simple
rule stated in technical terms.

In essence, the most preferable language is one that can be
fully validated by a regular expression. Programmers should
try to use such languages, but of course this is not always
possible, as these languages do not support recursive nesting
of data structures.

When such nesting is needed, the best way to limit the
corresponding parser complexity is to ensure that if one entity
or statement depends on another, they be hierarchically related.
To give a concrete example, it is acceptable to have XML tags
with meaning and validity dependent on the structure in which
they are contained—but not on structures elsewhere about the
document, since that would likely promote the grammar to
context-sensitive.

In other words, if the input of an application is too complex
to be described by BNF (or EBNF or ABNF, without introduc-
ing complexity by way of prose values), it is too complex to
be safe. In security, the input data format is the code’s destiny.

ABNF exemplifies a particularly useful tool for this purpose,
since it can easily represent length fields through its specific
repetition rule [3]. Due to the use of ABNF in specifying
Internet protocols, there are many parser generators available
that use it, including the multi-language project APG [47]. We
strongly recommend that developers use a parser combinator
library or a parser generator; this will result in fewer parser
differentials, and it centralizes the proof of correctness burden
in code specifically designed to generate correct parsers.

Conditions such as allowed protocol state transitions can
be excluded from this expression of the input language for
simplicity, but should usually be a predicate to validation (that
is, it should dictate what subset of the language is valid for
any given state).

Checksums, message authenticity codes, and signatures

represent another important set of idioms. We do not propose
that applications necessarily take all data at face value once the
parser accepts it; in many cases this would be self-defeating
and would introduce truly excessive complexity into the parser.
Attempting to write checksums and cryptographic primitives in
terms of LR-grammar production rules is unlikely to produce
security gains. However, it is important to represent the fields
which store these values in a manner amenable to reliable
parsing. Messages which are not accepted by the parser may
be rejected without further processing; once the parser accepts
the message, the program may have other checks to do.

It nearly goes without saying that general-purpose program-
ming languages are inappropriate for interchange formats. The
preceding sections detail several instances where accepting
such a language, even in spite of alleged trust (as with fonts)
or attempts to sandbox, results in remote code execution.
However, the same is not true of binary interchange formats–if
they follow the guidelines outlined in this paper, those might
well be more amenable to secure computing than their human-
readable counterparts.

In practice, most systems are not actually universal Turing
machines, because they are capable of storing only finite
amounts of state. In this, they are closer to linear-bounded
automata, which can accept context-sensitive languages [35].
The bounding of state implies that the halting problem for
such machines is indeed decidable, but the complexity of so
deciding is bounded only by the amount of state to which
the linear-bounded automation is limited [13]. Although it is
not strictly impossible to reason about such languages, Blum
shows that it is very difficult and often impractical.

The most complex languages for which there is a general so-
lution to the equivalence problem are the deterministic context
free languages, as mentioned above. A formal system for doing
so is given by Sénizergues [44]; though it is hardly practical
for software developers to verify implementations in this way,
the solution shows that mechanical verification is possible
and reasoning about at least some nontrivial properties of the
languages is possible.

Our recommendation derives both from this result, and from
the undecidability of the grammar equivalence problem for
languages more complex than deterministic context free (dis-
cussed in Input Language More Complex than Deterministic
Context Free, above). We further recommend that a parser
combinator library or at least a code generator be used to
derive the parser directly from the formal specification; this
puts the verification-of-correctness problem on the shoulders
of the developers of parser generators and parser combinators.

d) Be clear about specifications: The practice of making
and following clear specifications will remedy both the differ-
ing interpretations of input language and incomplete protocol
specification problems.

A clear, unambiguous specification makes it possible to
write or generate validators. Where a specification is unclear,
it is critical to document—preferably, in the grammar itself.

A complete specification leaves no bytes to chance. Charac-
ter sets and alphabets must be defined, at least by reference to



a well-defined set, for each field. Each field must be defined
in terms of its meaning, allowed content, allowed length, and
expected place.

An excellent way to make a specification for a context-free
input language is by writing it down in BNF. The exercise will
ensure completeness and make the validator extremely simple
to write.

e) Avoid overloading fields: Do not use special values in
fields to have special meanings. A field’s contents should be
as straightforward as possible. If, for example, the presence of
some field is optional but must be signalled, do not designate
a special value of all zeroes or all ones for that field to
indicate absence; to do so invites confusion. Instead, create
an additional field that indicates whether the optional element
is present or not, or where possible, simply infer the presence
or absence of the field from the presence or absence of a
representation of it (as in XML or JSON).

In general, the correct way to add additional functionality
is to add another field. Do not repurpose existing fields,
especially where existing implementations might use them in
ways that must be deprecated.

f) Do not transparently correct for invalid input: If
input does not validate correctly, either because it cannot be
canonicalized, required entities are missing, or illegal entities
are present, code should not make excuses for the input.
For example, input handlers should reject input containing
illegal entities, rather than discarding just the invalid portion
of the input. They should also reject inputs that are missing
terminating sentinels, rather than “helpfully” adding them.
Code that accepts invalid input definitionally has functionality
beyond the specification, and using input correction code
to apply a transformation to input to “activate” a malicious
payload is a favorite trick of attackers.

If it is necessary to support a buggy client that sends invalid
input, it is preferable to amend the specification (whether
for canonicalization or validation) to account for that input
formally, rather than treating it as an exception. This more
clearly states what the program actually accepts, and better
supports design review processes in determining whether the
compatibility accommodation presents a security threat.

The corresponding anti-pattern explains why the PDF and
Flash formats are the top attack vectors—specifically due to
the designed propensity of their parsers to “correct” faulty
inputs. This anti-feature both allows attackers to co-opt the
“correcting” rewriting mechanism as a part of their exploits,
and to avoid detection of their maliciously crafted payloads—
because it is never clear to a third-party checker which kinds
of malformations are malicious, and which are “benign” due
to being “fixable”.

V. HAMMER AND RELATED WORK

Hammer [49] is a parser construction kit designed to aid
developers in applying the LangSec methodology under pro-
duction constraints in the choice of language (Hammer targets
C/C++ and has bindings for Java, Python, Ruby, Perl, Go, PHP,
and .NET), and where code generation is not a supportable

option. Hammer enables production programmers to write in
parser-combinator style, making it obvious which properties
of input are expected and checked.

For decades, a principled approach to parsing was presumed
synonymous with Yacc and Bison. However, they are tooled
for compiler construction to the exclusion of other applica-
tions, such as parsing of binary payloads, where the need for
secure parsing is the strongest. Their modern successors such
as Spicy6 address binary parsing much better—where code
generation is desired and possible. ANTLR comes closest to
Hammer in its expressiveness, but is limited to the Java/C#
ecosystem.

Hammer does not preclude code generation. Nail [12], a
direct offshoot of Hammer, comes with a code-generation
step. Still, Hammer supports fully inline programming for the
industry environments where it is needed. In this it is similar
to Nom [17], a Rust streaming parser combinators library.

Importantly, Hammer separates the parsing algorithm from
its uniform API, designed to describe the input language, not
the backend. Hammer currently offers five parsing backends
for three different classes of languages, with the Packrat
algorithm [23] as the most general backend—all through the
same API.

VI. CONCLUSION

The existing orthodoxy of software security analysis that
supposes that software could be bug-free if only programmers
were more careful and stamped out all the bugs individually
is untenable, as abundantly demonstrated by the ongoing soft-
ware insecurity epidemic. Clearly, a more systemic approach
is required.

Our taxonomy provides just such an approach. It offers
clear mitigations for some of the most serious and abundant
sources of vulnerability that exist today, at a design level,
before software is released.

The classes of vulnerability we have taxonomized represent
risky behavior that should be treated the same way as issues
like many of those noted in CWE-398, Indicator of Poor Code
Quality. Indeed, we suggest that CWE identifiers be assigned
to each of the items in this taxonomy. They are each strong
indicators of exploitability, and particularly strong indicators
of subtle but severe bugs.

Unless and until we reconceptualize input processing errors
as systemic failings of the types indicated in this paper—and
clarify the linkage between these types of software issues and
actual vulnerability in penetration test and code audit reports—
the insecurity epidemic will continue.
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